
Statistical Mechanics - Ensembles 

Boltzmann and Gibbs ensemble methods for systems with interacting particles 
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Energy distribution of systems with interacting molecules or systems 

interacting with the environment 
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The probability distribution for Etot is not the product of independent single molecule 

energy probabilities 

Non-interacting systems: Total energy is subdivided into a sum of one molecule 

energies.  

Interacting systems: Total energy cannot be subdivided into a sum of one 

molecule energies. Interactions between molecules also contribute to the energy  
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The probability distribution for Etot is the product of independent single molecule 

energy probabilities 
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Energy distribution of systems with interacting molecules or systems 

interacting with the environment 
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• How do we find the distribution of velocity and positions for systems with 

interactions? 

 

• Do attractive forces increase the probability of finding molecules closer together? 

 

• Do repulsive forces increase the probability of finding molecules farther apart?  
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Distributing molecules among energy levels to give a fixed total energy 

Goal: For interacting systems, how do we determine the distribution of molecules / 

systems among the states? 

1) We know the values of a limited number of macroscopic 

thermodynamic variables, such as temperature, 

pressure, … (the macrostate of the system) 

2) We know the nature of the individual molecules 

(structure, energy levels, etc.) and their interactions with 

other molecules  

How can we determine the possible microstates that are consistent with 

constraints related to the macrostate of the system? 

 

How can we determine other macroscopic thermodynamic properties of the 

system from knowledge of the microscopic properties? 
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Counting states: Ways of distributing distinguishable objects among bins 

How many ways are there to place one object 

from a collection of four into a single bin? 
How many ways are there to place two objects 

from a collection of four into a single bin 

W = 4  

possible ways 

W = 4×3 possible ways 

If the order of placing the objects into the bins 

is not important, not all ways are different 
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Distributing all distinguishable objects among bins 

(1234) (1243) (1324) (1342) (1423) (1432) 

(2134) (2143) (2314) (2341) (2413) (2431) 

(3124) (3142) (3214) (3241) (3412) (3421) 

(4123) (4132) (4213) (4231) (4312) (4321) 

Ways of arranging four 

distinguishable objects 
4! = 4×3×2×1 

Binning 4 distinguishable 

objects into two groups of 

2 and 2  

(don’t care about order) 

{(12)(34)} {(13)(24)} {(14)(23)} 

{(23)(14)} {(24)(13)} {(34)(12)} 

{(123)(4)}{(124)(3)}{(134)(2)} {(234)(1)} 

Binning 4 distinguishable 

objects into two groups of 

3 and 1 

(don’t care about order) 

How many ways are there to bin the four 

distinguishable objects into two groups? 

But these are all 

equivalent if we 

don’t care about 

order! 
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Distributing all distinguishable objects among bins 

Distinct binning of 4 distinguishable 

objects into groups of 2 and 2 

{(12)(34)} {(13)(24)} {(14)(23)}  

{(23)(14)} {(24)(13)} {(34)(12)} 

If the order of the balls in the bins is not important,  

𝑊 =
4!

2! 2!
=

4×3×2×1 

(2×1)×(2×1) 
= 6 

{(123)(4)}{(124)(3)} {(134)(2)} {(243)(1)} 
Distinct binning of 4 distinguishable 

objects into groups of 3 and 1 

𝑊 =
4!

3! 1!
=

4×3×2×1 

(3×2×1)×1 
= 4 

Distinct binning of N distinguishable objects 

into k bins groups of a1 , a2, …, ak 
𝑊 =

𝑁!

𝑎1! 𝑎2! …𝑎𝑘!
=
𝑁!

 𝑎𝑗!
𝑘
𝑗=1

 

Product sign: multiplication over all bins j from 1 to k 

a1 = 2 

a2 = 2 

a1 = 3 

a2 = 1 
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Distributing molecules among energy levels to give a fixed total energy 

Example: Assume a non-interacting system with equally spaced energy levels of 

energy: 0, Δ, 2Δ, 3Δ, … 
… 

ε5 = 5Δ  

ε4 = 4Δ 

ε3 = 3Δ 

ε2 = 2Δ 

ε1 = 1Δ 

ε0 = 0 

Find distributions of molecules among the levels (microstates) satisfying constraints: 

 

1) The total number of molecules in the system is constant 

2) The total energy of the system is constant 

The discrete states are analogous to the 

discrete outcomes of the role of a die 

Goal: Given the quantum states of the system, how do we determine the distribution 

of molecules among the states consistent with known macroscopic information on the 

system? 
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The “macrostate”:     Etot  = 5Δ 

• A system with equally spaced energy levels; 

• What are the distributions of 5 independent 

molecules among the energy levels satisfying 

the constraint: 

… 

ε6 = 6Δ  

ε5 = 5Δ  

ε4 = 4Δ 

ε3 = 3Δ 

ε2 = 2Δ 

ε1 = 1Δ 

ε0 = 0 

Example: Distributing distinguishable molecules among energy levels 


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)(a 5 20 20 30 30 20 1 

How many ways can each distribution be constructed (i.e., the degeneracy)? 

 

Ensemble of distributions … 

ε6 = 6Δ  

ε5 = 5Δ  

ε4 = 4Δ 

ε3 = 3Δ 

ε2 = 2Δ 

ε1 = 1Δ 

ε0 = 0 



Distributions:  

{a0, a1, a2, …, a5} 

 Degeneracy (weight) 

 of each distribution 

Probability of each 

distribution P(di) 

d1:{4,0,0,0,0,1} 

d2:{3,1,0,0,1,0} 

d3:{3,0,1,1,0,0} 

d4:{2,2,0,1,0,0} 

d5:{2,1,2,0,0,0} 

d6:{1,3,1,0,0,0} 

d7:{0,5,0,0,0,0} 

W = 5!/[4!0!0!0!0!1!...] = 5 

20 

20 

30 

30 

20 

1 

5/126 

20/126 

20/126 

30/126 

30/126 

20/126 

1/126 

 j iji aNW !! ,

• A total 126 microstates of the molecules give the same macrostate 

• All 126 microstates are equally probable (law of equal a priori probabilities) but 

different distributions, di, show up with different probability 10 

Distributions (di) show how molecules occupy energy levels 

126i iW

aj :  Number of molecules that  occupy energy level j in 

each distribution (occupancy of state j) 
a2=2 

a1=1 

a0=2 

Possible distributions satisfying the two constraints on the macrostate 

… 

ε6 = 6Δ  

ε5 = 5Δ  

ε4 = 4Δ 

ε3 = 3Δ 

ε2 = 2Δ 

ε1 = 1Δ 

ε0 = 0 
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Probability of having different levels occupied 

Probability of level 0 being occupied in the collection (ensemble) of 

distributions 
7

0
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Distributions:  P(di) 

d1:{4,0,0,0,0,1} 

d2:{3,1,0,0,1,0} 

d3:{3,0,1,1,0,0} 

d4:{2,2,0,1,0,0} 

d5:{2,1,2,0,0,0} 

d6:{1,3,1,0,0,0} 

d7:{0,5,0,0,0,0} 

5/126 

20/126 

20/126 

30/126 

30/126 

20/126 

1/126 
0

1

2

3

4

5

6
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Probability 

The distribution of levels is graded.  

• Each energy state is less populated than those below, but more populated than 

those above  

… 

ε5 = 5Δ  

ε4 = 4Δ 

ε3 = 3Δ 

ε2 = 2Δ 

ε1 = 1Δ 

ε0 = 0 



Distributions:  

{a0, a1, a2, …, a7} 

 Degeneracy(weight) 

 of each distribution 

Probability of each 

distribution P(di) 

{6,0,0,0,0,0,0,1} 

{5,1,0,0,0,0,1,0} 

{5,0,1,0,0,1,0,0} 

{5,0,0,1,1,0,0,0} 

{4,2,0,0,0,1,0,0} 

{4,1,1,0,1,0,0,0} 

{4,1,0,2,0,0,0,0} 

{4,0,2,1,0,0,0,0} 

{3,3,0,0,1,0,0,0} 

{3,2,1,1,0,0,0,0} 

{3,1,3,0,0,0,0,0} 

{2,4,0,1,0,0,0,0} 

{2,3,2,0,0,0,0,0} 

{1,5,1,0,0,0,0,0} 

{0,7,0,0,0,0,0,0} 

7 

42 

42 

42 

105 

210 

105 

105 

140 

420 

140 

105 

210 

42 

1 

7/1716 

42/1716 

42/1716 

42/1716 

105/1716 

210/1716 

105/1716 

105/1716 

140/1716 

420/1716 

140/1716 

105/1716 

210/1716 

42/1716 

1/1716 

Total No. of 

microstates: 1716  

N = 7 and Etot = 7Δ; E = Δ  determine all possible distributions Macrostate 
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Most probable 

distribution 

Systems with large numbers of molecules (Problem Set) 

… 

ε7 = 7Δ 

ε6 = 6Δ 

ε5 = 5Δ  

ε4 = 4Δ 

ε3 = 3Δ 

ε2 = 2Δ 

ε1 = 1Δ 

ε0 = 0 



Distributions  

{a0, a1, a2, …, a9} 

 Degeneracy 

   (Weight) 

{8,0,0,0,0,0,0,0,0,1} 

{7,1,0,0,0,0,0,0,1,0} 

{7,0,1,0,0,0,0,1,0,0} 

{7,0,0,1,0,0,1,0,0,0} 

{7,0,0,0,1,1,0,0,0,0} 

{6,2,0,0,0,0,0,1,0,0} 

{6,0,2,0,0,1,0,0,0,0}  

{6,1,1,0,0,0,1,0,0,0}  

{6,1,0,1,0,1,0,0,0,0}  

{6,0,1,1,1,0,0,0,0,0}  

{6,0,0,3,0,0,0,0,0,0} 

{5,3,0,0,0,0,1,0,0,0} 

{5,0,3,1,0,0,0,0,0,0} 

{5,2,1,0,0,1,0,0,0,0} 

{5,1,2,0,1,0,0,0,0,0} 

{5,1,1,2,0,0,0,0,0,0} 

9 

72 

72 

72 

72 

252 

252 

504 

504 

504 

84 

504 

504 

1512 

1512 

1512 

Distributions: 

{a0, a1, a2, …, a9} 

 Degeneracy 

   (Weight) 

{4,4,0,0,0,1,0,0,0,0} 

{4,1,4,0,0,0,0,0,0,0} 

{4,3,1,0,1,0,0,0,0,0} 

{4,3,0,2,0,0,0,0,0,0} 

{4,2,2,1,0,0,0,0,0,0} 

{3,3,3,0,0,0,0,0,0,0} 

{3,4,1,1,0,0,0,0,0,0} 

{3,5,0,0,1,0,0,0,0,0} 

{2,6,0,1,0,0,0,0,0,0} 

{0,9,0,0,0,0,0,0,0,0} 

630 

630 

2520 

1260 

3780 

1680 

2520 

504 

252 

1 

Sum of microstates: 

21,718 
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Systems with large numbers of molecules – Example 2 

Macrostate: 

 j iji aNW !! ,

N = 9 and Etot = 9Δ; E = Δ  determine all possible distributions 

As N in the system increases, there are a 

few distributions with larger weight and 

many more with smaller weights 
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Probability of having different levels occupied 

• Probabilities of levels being occupied are graded 

• The most probable distribution of levels is also graded! {4,2,2,1,0,0,0,0,0,0}  

… 

ε5 = 5Δ  

ε4 = 4Δ 

ε3 = 3Δ 

ε2 = 2Δ 

ε1 = 1Δ 

ε0 = 0 0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5

L
ev

e
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Probability 

N = 9 and Etot = 9Δ 
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What happens with larger numbers of molecules? 

N = 20 and Etot = 20Δ 

0 2 0 1 0 

0 3 1 0 2 

1 0 1 3 2 

0 1 0 2 1 

ε4 = 4Δ 

ε3 = 3Δ 

ε2 = 2Δ 

ε1 = 1Δ 

ε0 = 0 ● ● ● ● ● ● ● ● 

● ● ● ● ● ● 

● ● ● ● 

● ● 

920! ! 1.7459 10jj
W a  

Consider a specific distribution 

(energy level indicated in each circle) 

ε4 = 4Δ 

ε3 = 3Δ 

ε2 = 2Δ 

ε1 = 1Δ 

ε0 = 0 ● ● ● ● ● ● ● ● ● ● 

● ● ● ● 

● ● ● 

● ● 
92.3279 10W   

● 

Another graded distribution 

A limited number of graded distributions become overwhelmingly more 

probable and dominate the properties of the ensemble 



Distribution of non-interacting molecules among discrete energy levels (states) 

Take an isolated ideal gas system of N molecules 

with the total energy Etot 

 

Each molecule is in a particle-in-box state          

ni = {nxi, nyi, nzi} with energy εi  

 

ε6   

 

ε5  

ε1  

ε4  
ε3  
ε2  
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Total energy of the N-molecule system: 

L 

L 

0 
A set of discrete energy levels is available to 

each molecule: 
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Quantum energy level ε1 

Occupancy  a1 
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j

j
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All molecules are binned by placing each into a slot corresponding to its energy state 

The distribution of molecules 

among levels must satisfy the 

constraints: 17 

Distribution of non-interacting molecules among state energies 

N molecules 

Etot total energy 

ε1 
ε2 ε3 ε4 ε5 

ε6 

εj εj< εj+1 

Make bins for each possible molecular energy state 

 εj+1 

a1 

• Total occupancies must equal the 

number of molecules 

• Total energy of all molecules is 

fixed 

∙∙∙ 

∙∙∙ ∙∙∙ 

a1 is the occupancy (number of molecules) in energy state 1 

ε2 

a2 
ε3 

a3 

ε4 

a4 

ε5 …  

a5 …  
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• The number of ways W(a) molecules can be distributed among energy levels 

increases greatly for large numbers of molecules and high energies  

• The most probable distribution {a*}, gives the greatest degeneracy W*({a}) and 

its probability dominants other macrostates as the number of molecules increases  

How do we find the most probable distribution? 

Maximize W(a) with respect to the occupancies, ai, subject to the constraints on the 

system.  
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The most probable distribution for systems with large numbers of 

molecules 

dx

xdf

xfdx

xfd )(

)(

1)(ln
 0

)(


dx

xdf
0

)(ln


dx

xfd

A function and its logarithm have the same maxima and minima 

So we maximize  ln[W(a)] instead of W(a). Why? 

Some math 
  Volume dependence of the 

energy levels are shown explicitly 
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1. The lnW(a) can be evaluated using Stirling’s approximation for large integer N,  

Finding the distribution with the maximum degeneracy (most probable 

distribution)  

Giving:  

  0lnln 



j jj

i

aaNN
a

Can we just calculate the derivative of lnW(a) with respect to the occupancy of a 

specific state i, ai to determine the most probable distribution?  

( )

jj

j j totj

a N

a V E
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
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



No! There are constraints 

on the ai’s and they are not 

all independent  

2.    Since the number of molecules is very (1023) occupancies are treated as 

continuous variables. 
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Method of Lagrange undetermined multipliers  

1 1 2

2 1 2

( , ,..., ,..) 0

( , ,..., ,..) ( ) 0

i jj

i j j totj

g a a a a N

g a a a a V E

   


  





The function for which we want to find the maximum 

The constraint equations 

,...),...,,(,...),...,,(,...),...,,(),,...;,...,,( 21222111212121 iiii aaagaaagaaafaaa  

0),,...;,...,,( 2121  iaaa


The new function which includes the constraints 

The maximum of the function subject to the constraints is determined by 

1 2 1 2[ ( , ,..., ,...; , )] 0k

k

a a a
a

 


 

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  

( )* (1 ) k V

ka e e
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• Constraints added with Lagrange multipliers α 

and β (to be later eliminated) 

•  α is unitless and β has units of energy-1   
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Occupancy of state i in the most probable distribution 

*ln 1 ( ) 0k ka V     

* * * *

1 2 3

( )(1 ) (1 )

( )
i

i

ii

V

Vi

i

N a a a a

N
e e e

e

 



   



    

  






The constraint on the occupancies eliminates the α Lagrange multiplier: 

Add the constraint equations to the function and set derivatives to 0 to find the maximum 

Finding the most probable distribution subject to the constraints 

Method of Lagrange underdetermined multipliers 
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
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*

j jj
M M P

Partition function 

(sum-over-states) 

Distribution with largest probability:  
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• Probability of one-molecule state i being occupied in the N molecule system in the 

most probable distribution 

Knowing probabilities of different states, averages mechanical quantities Mj can 

be determined for the most probable distribution 

• Exponential decay (grading) for the probability of occupancy based on the energy 

of state i. 
ε6   

 

ε5  

ε1  

ε4  
ε3  
ε2  

L 

L 

0 

What is the role of ? (see Appendix 6.A.1) 



Probabilities for systems with interacting particles: The set-up 

• The system has a constant volume V with N interacting molecules; 

• The N-molecule interacting system as a whole is characterized by a quantum state 

i with energy Ei; 

• Interactions between molecules in the system are captured in the quantum states i; 

• The system has walls which allow it to exchange heat with its surroundings, fixing 

its temperature. 
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Infinite bath (surroundings)  

at temperature T 

System: 

Volume V 

Molecules N 

Quantum states i 

Heat exchange 

occurs between 

system and bath 



Probabilities for systems with interacting particles: The “canonical” ensemble 

• A large (infinite) number of replicas of the system (the “ensemble”) are put in 

contact with each other and placed in the infinite heat bath. Heat exchange is 

possible between systems and bath; 

24 

Isolated ensemble at 

fixed total energy 

Ensemble of 

systems is 

equilibrated at a 

fixed temperature 

• The system replicas have constant volume and are maintained at constant 

temperature. This ensemble (collection) of systems is called the canonical ensemble; 

• After the ensemble equilibrates with the bath (environment), it is removed and 

placed in an isolated container;  

• The replicas of the system have a distribution of energies, Ei, from among possible 

quantum states  



• The isolated ensemble is made of A copies 

of the original system; 
• The total energy of the ensemble is E ; 

•  E and A are mathematical constructs and do 

not have physical significance.  
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Introducing the ensemble as a mathematical trick 

The systems in the ensemble are binned based on their energy level 

A systems 

E total energy A1 

. 

E5 E1 E3 E20 E1 

… 

E1 E2 E3 E4 E5 

E6 ∙∙∙ 

Ej  Ej+1 ∙∙∙ ∙∙∙ 
Aj Aj+1 

Quantum energy level    E1    E2    E3   E4    E5   …  

Occupancy of level        A1    A2    A3   A4    A5   …  
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. Ek 

E5 E1 E3 E20 E1 

… 

Molecule states εi Total system states Ei 

Analogy between non-interacting system and ensemble 









Nj jj

j j

Ea

Na










E

A

j jj

j j

EA

A

The total system energy can be 

distributed in different ways 

among molecules of the gas 

The total gas energy E is the sum of 

energies of individual molecules: 
The ensemble energy E  is the sum 

energies of the systems: 

The total ensemble energy can be 

distributed in different ways among 

systems 

ε6   

 

ε5  

ε1  

ε4  
ε3  
ε2  

E5  

E1  

E4  

E6 

E3  
E2  

E7 



N-molecule quantum energy state: E1 E2 E3 E4 E5 …  

Occupancy of each energy state:  A1 A2 A3 A4 A5 …  


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j AAAA
W
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
A
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Ways of assigning systems in the ensemble to different possible quantum states 

Constraints 

Finding the most probable distribution of systems in the ensemble 

...)lnln(ln)(ln 2211 AAAAW  A AA
For a large ensemble (using 

Stirling’s approximation) : 









E

A

j jj

j j

EA

A

0)(ln 













































EA j

j
j

j
j

i

EAAW
A

A

Maximize lnW(A) with respect to the occupancy of each state Ai using Lagrange 

undetermined multipliers: 

A particular distribution of members of the ensemble between system energy levels: 
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“Canonical” ensemble partition 

function for system states 
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The number of systems in the ensemble in state i in the 

most probable distribution, are: 

 j jjPMM
Averages of quantities can be calculated from knowledge 

of the probabilities 

Probability of observing a particular N-molecule state i in the ensemble in 

the most probable distribution 

Using the first constraint: Ai iA*
eliminate the undetermined multiplier α, 

Most probable distribution of systems in the ensemble 

We still can’t use these relations since we do not know  
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dE TdS PdV 

“Thermodynamic equation of state”: 

A review of a thermodynamic relation 

, ,
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          

Changes in energy of a system: 

Changes in the Helmholtz free energy of a system: 

Maxwell’s equations 

Taking the derivative of the energy equation with respect to volume: 

Using the chain rule: 
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Determining the β undetermined multiplier by comparing 

statistical mechanical and thermodynamics relations 

• Statistical mechanics relation for average system energy in the ensemble: 

• Thermodynamic relation for pressure 

30 , ,N N V
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    
     

    

• After some steps:  

(see Appendix 6.A.2 of MSFP) 

S

E
P

V

 
  

 

Pressure for state j Probability of state j 

Statistical mechanics relation for average system pressure in the ensemble: 

Ensemble 

average pressure 
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Thermodynamic relation: 
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Comparing statistical mechanics and thermodynamics relations 
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j
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),,(

Energy of N-atom interacting system 

(the Boltzmann factor!!!) 

Statistical mechanics relation for ensemble averages: 

Canonical ensemble (isothermal-isochoric ensemble) partition function: 

• Temperature is a characteristic of the ensemble, not an individual member of the 

ensemble.  

• The connection of statistical mechanics and macroscopic thermodynamics is 

through the constraints which show how the mechanical system is coupled to the 

unknown external world / universe. 
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The partition function and thermodynamic quantities 
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Q
kTE
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Note that this relation is the statistical mechanical form for the equation of state! 

The ensemble average energy is recognized in this relation: 
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The temperature derivative of lnQ gives: 

Similarly, the volume derivative of lnQ gives: 

Relating thermodynamic quantities from the canonical ensemble partition function: 
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Recall: 

Instead of Q, we deal with the logarithm 
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“Canonical” ensemble 

(isothermal-isochoric ensemble) 

partition function for system states 
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( ) ( )j jjM T M P T
Averages of quantities in the ensemble can be calculated 

from knowledge of the probabilities of states j 

Probability of observing a system in state i in most probable distribution of the 

ensemble 

Probability distribution in the ensemble 

( , )/

( , )/
( , , ) ( , , ) ( , )
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e
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 
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 

 
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Ensemble average energy in terms of the canonical ensemble probability 

distribution 



Ways to change the E of a N-molecule ideal 

gas system 
 

2
2 2 2

2/3
1

( , )
8

N

tot x y z

h
E N V n n n

mV
  

 

  

• Change the distribution of 

molecules among the states 

• Change the volume V (which 

changes energy levels) without 

changing the distribution  

 

• Change the number of 

molecules in the system without 

changing the levels 

ℎ2

8𝑚𝑉2/3
 𝑛𝑥𝜈

2 + 𝑛𝑦𝜈
2 + 𝑛𝑧𝜈

2  

𝑁

𝜈=1

 

ℎ2

8𝑚𝑉2/3
 𝑛𝑥𝜈

2 + 𝑛𝑦𝜈
2 + 𝑛𝑧𝜈

2  

𝑁

𝜈=1

 

ℎ2

8𝑚𝑉2/3
 𝑛𝑥𝜈

2 + 𝑛𝑦𝜈
2 + 𝑛𝑧𝜈

2  

𝑁

𝜈=1

 

Important for open 

systems  

(grand Canonical 

ensemble) 

jEj(N,V)Pj(N,V,T) 

jEj(N,V)Pj(N,V,T) 



Statistical mechanical interpretation of work and heat 
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qwdE  Thermodynamic expression 

for energy change: 

 j jj PEE

 j jjj jj dPEdEPEd

Statistical mechanical 

expression for ensemble 

average energy change: 

Energy can change by performing 

work or transfer of heat: 

The ensemble average energy can varied by: 

1) Changing system energy levels while keeping probabilities in the ensemble (i.e., 

distribution of systems among the levels) fixed 

2) Changing the probabilities for distribution in the ensemble among the energy levels 

• In the particle in a box, energy levels can be changed by varying the volume of 

the system: 

• Therefore  j jjdEP

 j jjdPE

corresponds to change of energy due to work 

must correspond to transfer of heat and 
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Statistical mechanics and thermodynamic functions 
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Can be shown that: 

(see Extended Lecture Notes)  
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From the thermodynamic relation A = E – TS, we can determine the statistical mechanical 

expression for the Helmholtz free energy: 

),,(ln TVNQkTA We get the simple relation: 
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The canonical partition function is the “characteristic” function for the Helmholtz free energy 
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We can use the second law of thermodynamics expression: 

to relate thermodynamic quantities to the canonical ensemble partition function. 
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Fluctuations in the energy distribution of systems in the ensemble 
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How wide is the energy distribution in the ensemble? 

Starting from the relation for the average energy of the ensemble of systems 

Determine the temperature derivative of the energy: 
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Fluctuations in the energy distribution of systems in the ensemble are 

related to the system heat capacity 

 22 2

2 2

1 1
V E

d E
C E E

dT kT kT
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For a monatomic ideal gas, CV = 3Nk/2 and so  
2 2 23

2
E Nk T 

3
2

3
2

1E
N kT

E NNkT


  

Recall that the temperature derivative of the energy is the heat capacity: 

What are the magnitudes of the energy fluctuations in the ensemble? 

• Fluctuations are small relative to the 

average energy for systems with large N 

• If N = 1023, then fluctuations in ~10-12 of 

the average energy 

• Meaning: Despite having the same temperature, individual members of the ensemble 

can have different energies. 
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Fluctuations in the energy distribution between members of the ensemble 
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The probability distribution for the energy in a canonical ensemble is: 

Expanding the probability distribution about the average energy and neglecting 

terms of order 1/N2 or smaller, a Gaussian distribution for the energy in a 

canonical ensemble is derived (Central limit theorem strikes again!): 

Similarly the fluctuations in the pressure for systems in a canonical ensemble 

can be determined 

We can show (see McQuarrie): 
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Partition functions for non-interacting systems 

)()2()1()(, NNE itot    
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How does the partition function behave for systems with non-interacting molecules: 

We replace this expression for energy in the canonical ensemble partition function: 

Quantum states for individual molecules 
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

 

 

  

Sum over states of N-molecule 

system 

Sum over states of the entire system is 

written in terms of the sum of states of 

individual molecules 

The N-molecule partition function is decomposed to a product of 1-molecule 

partition functions for indistinguishable molecules 
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Partition functions for non-interacting systems 

[ ]// , , , , ,( , )
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 i translational rotational vibrational electronic nuclear spin         

We can repeat the process for the internal degrees of freedom of each molecule: 

The 1-molecule canonical ensemble partition function decomposes to partition 

functions for different degrees of freedom: 

,, , , ,// / / /
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i j k s
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



    

Using quantum mechanical expressions for translational, rotational, vibrational, 

electronic, and nuclear spin energies, we can determine the partition function for 

each degree of freedom. 



Partition function q(V, T) for one molecule as a sum over energy levels 

E0 = 0

E1 = E

E2 = 2E

E0 = 0

E1 = E

E2 = 2E

kTkTkT eeeTq /2//0 423)(  

3 =2Δ 

2 =1Δ 

1 = 0 

kTkTkTkT

kTkTkTkTkT

eeee

eeeeeTq

/2/2/2/2

///0/0/0)(













j

kTjeTq
/)1(

)(


 
E

kTVNeTq /),()()( 

42 

Gather similar terms 

Sum over one-molecule states 

Sum over one-molecule energy levels 

Degeneracy of the energy state 

Assume we have a system with nine states 

Expressing the partition function as a sum over energy levels shows the 

physical content more clearly. 



Physical interpretation of the canonical partition function 

kTkTkT eeeq /2//0 423  

E0 = 0

E1 = E

E2 = 2E

E0 = 0

E1 = E

E2 = 2E3 =2Δ 

2 =1Δ 

1 = 0 

T (in Δ/k units) 0      0.5      1.0      1.5      2.0      5.0      10.0        → ∞ 

 

q(T)     3      3.34    4.28    5.08    5.68    7.32    8.08        → 9 

P1 =   3e-0/kT/q 1      0.90    0.70    0.59    0.53    0.41    0.37        → 0.33 

P2 =  2e-Δ/kT/q 0      0.08    0.17    0.20    0.21    0.22    0.22        → 0.22 

P3 =  4e-2Δ/kT/q 0      0.02     0.13   0.21    0.26    0.37    0.41        → 0.44 
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The partition 

function is: 

Δ 

Δ 

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kTVjeTVq
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

Changes in partition function and probability of energy levels with temperature 



Physical interpretation of the canonical partition function 

E0 = 0

E1 = E

E2 = 2E

E0 = 0

E1 = E

E2 = 2E3 = 2Δ 

2 = 1Δ 

1 = 0 
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Variation of partition 

function with 

temperature 

Variation of 

probabilities with 

temperature 

P1 =  3e-0/kT/q 

P2 =  2e-Δ/kT/q 

P3 =  4e-2Δ/kT/q 

),(

)(
)(

/)(

TVq

e
P

kTV





Probability of 

occupancy of  

energy level E 

The partition function gives a measure of the number of states accessible to 

the system at the given temperature 
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Switching from the quantum to classical description of states 

The quantum description of the state of an N-atom system in terms of a discrete set of 

states represented by a single quantum index i is much simpler than in terms of a 

continuous variation of the state {r1, p1, r2, p2, …, rN, pN} in phase space. 
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 NNNNN ddddPff prprprprprpr
r

r
 1111 }),,,,({}),({}),({

max,1

min,1

It is easier to do calculations of averages with discrete states 

than with continuous states 

• The quantum description of the average of a function involves the sum over the 

discrete quantum states of an N-atom system 

• The classical description of an average of a function involves an integration over 

the 3N-dimensional phase space of the system 
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The correspondence between quantum and classical states 

From the Heisenberg uncertainty principle, there is minimum 

subdivision of phase space volume which is related to Planck’s 

constant: 

 

ΔpΔx = h    is the smallest subdivision of phase space volume 

which is meaningful,  

p 

x 

Δp 

Δx 

The correspondence between quantum states and volume in classical phase space is: 

 

                    Number of quantum states ↔ Volume of phase space / h3N 

 

• The phase space volume corresponds on average to a discrete quantum state 

3

N N

N
i

d d

h
  

r p
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Semi-classical limit to the canonical partition function 

• Sum over N particle quantum states 

( , ,..., , )1 1
1 13

1

!

H kTN N
N NN

Q e d d d d
N h


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p q p q
p q p q

Molecules are indistinguishable so many states are equivalent 

h: minimum volume of phase space element from 

quantum mechanics 

• Integral over phase space elements 

dpdq has units of energy·time same as the h Planck’s constant  

(unit of “action” in classical mechanics) 
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Semi-classical equivalent 



1 1 1 1 1 1( , , ..., , , ) ( , , ,..., , , )x y z xN yN zN N N NH K p p p p p p U x y z x y z 

2 2 2 2 2 2( )/2 ( ,..., )1 1 1 1 3
1 13

1

!

p p p p p p mkT U q q kTNx Ny Nzx y z N
N Np VN

Q e d d e d d
N h

       
  p p q q

Hamiltonian of the system represents the energy in a canonical ensemble 

Momentum integrals are Gaussian! 
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“Classical” (semi-classical) canonical partition function   

We can separate the momentum and position integrals    

1/22
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Semi-classical limit to the canonical partition function 
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Hamiltonian of the system represents the energy in a canonical ensemble 
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Configurational integral 
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Evaluating the momentum position integrals    

• Regardless of the form of the potential energy function, the contribution of the 

kinetic energy to the partition function is always the same. 

• All the complexity of the intramolecular and intermolecular forces are in the 

configurational integral 
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If there are no interactions among the molecules in the system 
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Substituting and separating momenta from coordinates the expression for 

probability :  

Classical expression for probability in the canonical ensemble 
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50 • This is true for gases, liquids, and solids! 

• The Hamiltonian always has the same form with respect to momentum 

• Classically momenta always follow the Maxwell distribution!!! 



({ , })
1 1

({ , })
1 1

({ , })
( , , )

H kT
N N

H kT
N N

H e d d d d
E N V T

e d d d d









q p

q p

q p q p q p

q p q p

• Decompose into kinetic energy and potential energy contributions: 

Classical expression for average energy in the canonical ensemble 
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• Each kinetic energy term gives the same contribution of kT/2 to the average energy 
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What is relation between the ensemble average and experimental observations 

on a single system??? 

Ergodic hypothesis: The probability of observing a state in an ensemble of systems 

reflects the relative amount of time an individual system spends in that state.    

B. Fresch, G. J. Moro, "Emergence of equilibrium 

thermodynamic properties in quantum pure states. 

I. Theory", J. Chem. Phys. 133, 034509 (2010) 
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