Statistical Mechanics - Ensembles

Boltzmann and Gibbs ensemble methods for systems with interacting particles

J. Willard Gibbs
(1839-1903)

Ludwig Boltzmann
(1844 — 1906)

(1887 — 1962)

Sir R. H. Fowler
(1889-1944)

Max Planck
(1858 — 1947)


http://en.wikipedia.org/wiki/File:Josiah_Willard_Gibbs.jpg

Energy distribution of systems with interacting molecules or systems
Interacting with the environment

Non-interacting systems: Total energy is subdivided into a sum of one molecule

energies.
Eiot =E1+Eo+---+ Ep

The probability distribution for E,; is the product of independent single molecule
energy probabilities

PN (Etot) = RL(E1)RL(E2)R(E3) - R (EN)

Interacting systems: Total energy cannot be subdivided into a sum of one
molecule energies. Interactions between molecules also contribute to the energy

Etot — K1+K2 Tt KN +U12 -I—U13+---—|—Uij 4.
=E +E,+---+E,

The probability distribution for E,, is not the product of independent single molecule
energy probabilities

PN (Etot) # PL(E)RL(E2) P (E3)---R(EN)



« How do we find the distribution of velocity and positions for systems with
Interactions?

Energy distribution of systems with interacting molecules or systems

Interacting with the environment

Do attractive forces increase the probability of finding molecules closer together?

Do repulsive forces increase the probability of finding molecules farther apart?




Distributing molecules among energy levels to give a fixed total energy

Goal: For interacting systems, how do we determine the distribution of molecules /
systems among the states?

1) We know the values of a limited number of macroscopic
thermodynamic variables, such as temperature, .
pressure, ... (the macrostate of the system)

2) We know the nature of the individual molecules
(structure, energy levels, etc.) and their interactions with
other molecules

How can we determine the possible microstates that are consistent with
constraints related to the macrostate of the system?

How can we determine other macroscopic thermodynamic properties of the
system from knowledge of the microscopic properties?



Counting states: Ways of distributing distinguishable objects among bins

0000

How many ways are there to place one object How many ways are there to place two objects
from a collection of four into a single bin? from a collection of four into a single bin

©0 /00 00 00

W = 4x3 possible ways

If the order of placing the objects into the bins
IS not important, not all ways are different 5




Distributing all distinguishable objects among bins

Ways of arranging four  (1234) (1243) (1324) (1342) (1423) (1432)
distinguishable objects  (2134) (2143) (2314) (2341) (2413) (2431)

But these are all
(3124) (3142) (3214) (3241) (3412) (3421)

(4123) (4132) (4213) (4231) (4312) (4321) ~ cquivalentifwe
don’t care about

order!

41 = 4x3x2x1

- QO(

How many ways are there to bin the four
distinguishable objects into two groups?

Binning 4 distinguishable
objects into two groups of {(12)(34)} {(13)(24)} {(14)(23)}
2 and 2 {(23)(14)} {(24)(13)} {(34)(12)}

(don’t care about order)

Binning 4 distinguishable
objects into two groups of

3and 1 1(123)(H) H(124)(3) H(134)(2)} 1(234)(1)}

(don’t care about order)



Distributing all distinguishable objects among bins

If the order of the balls in the bins is not important,

Distinct binning of 4 distinguishable {(12)(3H)} {(13)(24)} {(14)(23)}

objects into groups of 2 and 2 {(23)(14)} {(34)(12)}
41 4x3Ix2x] =
2121~ (2x1)=x(2x1) a,=2

Distinct binning of 4 distinguishable
objects into groups of 3 and 1 1(123)(4) H(124)(3)} 1(134)(2)} 1(243)(1)}

4! 4x3%x2x1] a; =3
W‘3!1!_(3x2x1)x1 =4 =1
. . . _ N! N
Distinct binning of N distinguishable objects W = =
a!a,!..a! ?:1 a;!

Into k bins groups of a, , a,, ..., a,

////////2'

Product sign: multiplication over all bins j from 1 to k



Distributing molecules among energy levels to give a fixed total energy

Goal: Given the guantum states of the system, how do we determine the distribution
of molecules among the states consistent with known macroscopic information on the

system?

Example: Assume a non-interacting system with equally spaced energy levels of
energy: 0, A, 2A, 3A, ...

€5 = 9A The discrete states are analogous to the

g, = 4A discrete outcomes of the role of a die

€. =3A

83 = 2A °® ¢ .o oo .o. : :
2 ) ° oo ) e o

g, = 1A

g =0

Find distributions of molecules among the levels (microstates) satisfying constraints:

1) The total number of molecules in the system is constant
2) The total energy of the system is constant



Example: Distributing distinguishable molecules among energy levels

 Asystem with equally spaced energy levels; 86: 6A
» What are the distributions of 5 independent & = 5A
molecules among the energy levels satisfying £, = 4A
the constraint: £, = 3A
The “macrostate”:  E,; = 5A g, = 2A
g = 1A
g =0
Ensemble of distributions
g5 = BA
€5 = DA
g, =4A
g3 =3A >
g, = 2A
81 - lA OOOOO
g =0

1 2 3 4 3 6 7

How many ways can each distribution be constructed (i.e., the degeneracy)?
N!

W(a) =

5 20 20 30 30 20 1



Possible distributions satisfying the two constraints on the macrostate

gg = BA

Distributions (d;) show how molecules occupy energy levels £ = 5A
g, = 4A
8, : Number of molecules that occupy energy level j in a,=2 83f§i oo
each distribution (occupancy of state j) a,=1 Z 1A .
a0:2 80=O [N
Distributions: Degeneracy (weight),, _ NUTT 2 Probability of each
= e S .

{8y, a3, 8y ..., 85} | of each distribution I distribution P(d;)
d,:{4,0,0,0,0,1} W = 5!/[410!0!10!0!1!...] =5 5/126
d,:{3,1,0,0,1,0} 20 20/126
d,:{3,0,1,1,0,0} 20 20/126
d,:{2,2,0,1,0,0} 30 30/126
d::{2,1,2,0,0,0} 30 30/126
ds:{1,3,1,0,0,0} 20 20/126
d-:{0,5,0,0,0,0} 1 W =126 1/126

* A total 126 microstates of the molecules give the same macrostate
« All 126 microstates are equally probable (law of equal a priori probabilities) but
different distributions, d;, show up with different probability

10




Probability of having different levels occupied

Probability of level 0 being occupied in the collection (ensemble) of . —oA
distributions >
7 84 - 4A -
P(0)= po(d)<P(@) 5= 30 ——
g, = 2A ——
:% e teXimteXipteXmpteXmets X tsXm & =1A
80 - O -
6
5 m Distributions: P(d))
L, bom d,:{4,0,0,0,0,1} | 5/126
© ; - d,:{3,1,0,0,1,0} | 20/126
: ] d,:{3,0,1,1,0,0} | 20/126
|2 > d,:{2,2,0,1,0,0} | 30/126
1 - d:{2,1,2,0,0,0} | 30/126
0 ™ ds:{1,3,1,0,0,0} | 20/126
0 0.1 0.2 0.3 0.4 05 |d,:{0,5,0,0,0,0} | 1/126
Probability

The distribution of levels is graded.
» Each energy state is less populated than those below, but more populated than
those above 11



Systems with large numbers of molecules (Problem Set)

Macrostate

Distributions:
{a,,a,a, ...,a}

Degeneracy(weight)
of each distribution

Probability of each
distribution P(d;)

{6,0,0,0,0,0,0,1}
{5,1,0,0,0,0,1,0}
{5,0,1,0,0,1,0,0}
{5,0,0,1,1,0,0,0}
{4,2,0,0,0,1,0,0}
£4,1,1,0,1,0,0,0}
{4,1,0,2,0,0,0,0}
{4,0,2,1,0,0,0,0}
{3,3,0,0,1,0,0,0}

{3,2,1,1,0,0,0,0}

£3,1,3,0,0,0,0,0}
{2,4,0,1,0,0,0,0}
{2,3,2,0,0,0,0,0}
{1,5,1,0,0,0,0,0}
£0,7,0,0,0,0,0,0}

I
42
42
42

105
210
105
105
140
420
140
105
210
42
1

Total No. of
microstates: 1716

7/1716
4211716
4211716
4211716

105/1716
210/1716
105/1716
105/1716
140/1716
420/1716
140/1716
105/1716
210/1716
4211716
1/1716

N=7andE,,=7A; (E)=A determine all possible distributions

g, = TA ——

g = BA ———
g, = BA ———
g, = 4N ——
g,=3A ——
g, = 2A ———
g, = 1A ——

g =0

Most probable

distribution

12



Systems with large numbers of molecules — Example 2

Macrostate: N =9 and E,; = 9A; (E) = A determine all possible distributions

Distributions Degeneracy Distributions: Degeneracy
{85,858, ..., 8} | (Weight) {ay a;, @, ..., g} (Weight)
{8,0,0,0,0,0,0,0,0,1} 9 {4,4,0,0,0,1,0,0,0,0} 630
{7,1,0,0,0,0,0,0,1,0} 72 {4,1,4,0,0,0,0,0,0,0} 630
{7,0,1,0,0,0,0,1,0,0} 72 {4,3,1,0,1,0,0,0,0,0} 2520
{7,0,0,1,0,0,1,0,0,0} 72 {4,3,0,2,0,0,0,0,0,0} 1260
{7,0,0,0,1,1,0,0,0,0} 72 {4,2,2,1,0,0,0,0,0,0} 3780
{6,2,0,0,0,0,0,1,0,0} 252 {3,3,3,0,0,0,0,0,0,0} 1680
{6,0,2,0,0,1,0,0,0,0} 252 {3,4,1,1,0,0,0,0,0,0} 2520
{6,1,1,0,0,0,1,0,0,0} 504 {3,5,0,0,1,0,0,0,0,0} 504
{6,1,0,1,0,1,0,0,0,0} 504 {2,6,0,1,0,0,0,0,0,0} 252
{6,0,1,1,1,0,0,0,0,0} 504 {0,9,0,0,0,0,0,0,0,0} 1
16,0,0,3,0,0,0,0,0,0} 84 Sum of microstates:
{5,3,0,0,0,0,1,0,0,0} 504 21,718
{5,0,3,1,0,0,0,0,0,0} 504
15.2,1,0,0,1,0,0,0,03 1512 As N In the system increases, there are a
15,1,2,0,1,0,0,0,0,03 1512 few distributions with larger weight and
{5,1,1,2,0,0,0,0,0,0} 1512

Wi = N!/Hjaj’i!

many more with smaller weights
13



Probability of having different levels occupied

N=9andE, =9A
10 |
"
|
1
_ 6=
g
o > . g5 = BA
4 —n g, = 4A
3 < g3 =3A
1 > g = 1A
0 . . . . = gg=0 —
0 0.1 0.2 0.3 0.4 0.5
Probability

Probabilities of levels being occupied are graded
The most probable distribution of levels is also graded! {4,2,2,1,0,0,0,0,0,0}

14



What happens with larger numbers of molecules?

N =20 and E,, = 20A Consider a specific distribution -
(energy level indicated in each circle)

“h 00000
b=l 00000
W :;(;!/Hjaj 1=1.7459x10° @@@®@
Another graded distribution @@®@@

g, =4A ~®
ga=3A ~*° ’ o
82:2A oo W 223279X10
SlzlA —o-0—0-o
80:() 0000000000

A limited number of graded distributions become overwhelmingly more

probable and dominate the properties of the ensemble 15



Distribution of non-interacting molecules among discrete energy levels (states)

Take an isolated ideal gas system of N molecules

7 a 5 p 7 if’
with the total energy E,., . I r N
0 Ao N w8
L -1 - <17
.- - - g ure o,
Each molecule is in a particle-in-box state O P R T
_ - <o % s
n; = {n,; Ny, n,;} with energy e; - . .ﬂ(}.
o <o ¢'¢ Ne
n? (0, + 0 +n2) e SR T
&i(V) = smy 2° 3 ‘%(_:/;/ f&ﬂ
O o« Re
A set of discrete energy levels is available to L
each molecule:
€6
. Total energy of the N-molecule system:
85 h2 N
. 2 2 2
8;1 Etot(N’V) _ 8mV2/3 Z(nv,x +nv,y +nv,z)
82 v=1
€1

16



Distribution of non-interacting molecules among state energies

All molecules are binned by placing each into a slot corresponding to its energy state

Make bins for each possible molecular energy state

N molecules € 2 |[%2 %2 |[¢3 .o ||%4 |55
[ J o [
E,,, total energy R | PO | IR | B | B
v s P &
s 7 1\. @ . 0/.:1":. 6 [ (X X}
Ay o5 4 Y
<V o~
SETTER [ -
Sy e ~ V7 o I 1+1
- &j®¢ N &1\. 7 }0 XY J J oo 8J< 8J+1
PR R
et 5 « Vo
’ ‘/;f'“u ¢°ﬂ./‘7‘./> T
L N v T a, Is the occupancy (number of molecules) in energy state 1
1 pancy gy
Quantum energy level €1 &y €3 €4 Ec
Occupancy ay a, a, a, as
f -
The distribution of molecules | 2. =N » Total occupancies must equal the

number of molecules

j
> ae(V)=E, ° Total energy of all molecules isy7
L fixed

among levels must satisfy the -
constraints:




The most probable distribution for systems with large numbers of
molecules

» The number of ways W(a) molecules can be distributed among energy levels
Increases greatly for large numbers of molecules and high energies

» The most probable distribution {a*}, gives the greatest degeneracy W*({a}) and
Its probability dominants other macrostates as the number of molecules increases

How do we find the most probable distribution?
Maximize W(a) with respect to the occupancies, a;, subject to the constraints on the

system.
) N N >..a;=N
W(a) = lala.l... | |
Volume dependence of the
Some math energy levels are shown explicitly
A function and its logarithm have the same maxima and minima
din f(x
dlnf(x): 1 df(x) df(x):O N ():O
dx f(x) dx dx dx

So we maximize In[W(a)] instead of W(a). Why? e



Finding the distribution with the maximum degeneracy (most probable
distribution)

W (a) = N! NI

a;la,las!l-- B Hja]-!
1. The InW(a) can be evaluated using Stirling’s approximation for large integer N,
INnN!=NInN—N
Giving:
InW (a) = In(N!) —In(a{!) —In(a,!) —...
=NINN-N—(aInag—a +ayInay, —a, +---)
=N InN—Zjaj Inaj

2. Since the number of molecules is very (10%%) occupancies are treated as
continuous variables.

Can we just calculate the derivative of InW(a) with respect to the occupancy of a
specific state 1, a; to determine the most probable distribution?

0 {N InN N _}_ o No! There are constraints Zjaj =N
Sas —zjajinaj=0 5 e a.s and they are not” N _E
! all independent \Zj i€ (V)= o



Method of Lagrange undetermined multipliers
The function for which we want to find the maximum
f(a,a,,..,a,.)=INW(@=NInN - Z a;Ina,
The constraint equations
rgl(awaz’""ai’--) :Zjaj -N =0
9,(3,8,,.3,.) =D 8;5(V)-Ey =

The new function which includes the constraints

ARy, By gy ) = T (B BB e0) = A0y (B, By 1) — £, (B, By

The maximum of the function subject to the constraints is determined by

VA(a,,a,,...,a;,....4,1,)=0

0 . _
8_ak[A(a1,az,...,ak,...,ﬂl,ﬂg)] —

a,..

)

20



Finding the most probable distribution subject to the constraints
Method of Lagrange underdetermined multipliers

Add the constraint equations to the function and set derivatives to 0 to find the maximum

0 {N INN-> a;lna;-a() a —N)—,B(Zjajgj(\/)—Etot)}:O

oa,

« Constraints added with Lagrange multipliers a

—lna’ -1-a - B¢ —0 and S (to be later eliminated)
: paV) « aisunitless and £ has units of energy-!

a, =e Mg/ V) Occupancy of state i in the most probable distribution

The constraint on the occupancies eliminates the a Lagrange multiplier:
N=a +a,+a,+ =) a

_ g _ N
—e (1+a>zie palV) _y o-(ra) _

Zle_ﬂgl (V) 21




Distribution with largest probability: =
* Probability of one-molecule state i being occupied in the N molecule system in the
most probable distribution

o* ar e Fi(V) oA V) Partition function
TN o o] V)" q,B) —— (sum-over-states)

« Exponential decay (grading) for the probability of occupancy based on the energy
of state I.

PP s %6
5 ! r TN
gy s 4 Y
|_ P <~ v 7 =T
afe L S .
¢‘¢ Se '71‘: - v : 85
=7 st €
P L. ,1-/":, 84—.—.
¢./>T'°T."i"’ A 3 —0-00
V7 ‘I
AR A ~
0 1 £ —0000-000

Knowing probabilities of different states, averages mechanical quantities M; can
be determined for the most probable distribution

<M > - Zj M;P; What is the role of 5? (see Appendix 6.A.1)



Probabilities for systems with interacting particles: The set-up

The system has a constant volume V with N interacting molecules;

The N-molecule interacting system as a whole is characterized by a quantum state
| with energy E;;

Interactions between molecules in the system are captured in the guantum states i;

The system has walls which allow it to exchange heat with its surroundings, fixing
Its temperature.

Infinite bath (surroundings)
at temperature T

Heat exchange

occurs between System:
system and bath W volume V
Molecules N

Quantum states i

23



Probabilities for systems with interacting particles: The “canonical” ensemble

* A large (infinite) number of replicas of the system (the “ensemble”) are put in
contact with each other and placed in the infinite heat bath. Heat exchange is
possible between systems and bath;

 The system replicas have constant volume and are maintained at constant
temperature. This ensemble (collection) of systems is called the canonical ensemble;

« After the ensemble equilibrates with the bath (environment), it is removed and
placed in an isolated container;

* The replicas of the system have a distribution of energies, E;, from among possible
quantum states

Isolated ensemble at

Thermostat bath at T fixed total energy
Ensemble of A
systems is T
equilibrated at a
fixed temperature o RNV

NV,T

24



Introducing the ensemble as a mathematical trick

I[solated ensemble at T

_>

« The isolated ensemble is made of 4 copies \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

of the original system;
« The total energy of the ensemble is & ;
& and 4 are mathematical constructs and do

not have physical significance. L

i A
v

A systems

E total energy
R R R R R R

E
A
c

E5 El E3 E20 El

—y

Quantumenergy level E, E, E; E, E; ...
Occupancy of level Al A, Ap AL A L.

T
m
M
+
|

s

7

SRR

25



Analogy between non-interacting system and ensemble
Molecule states ¢;

The total gas energy E is the sum of
energies of individual molecules:

|

The total system energy can be
distributed in different ways
among molecules of the gas

2jaj=N
2jajej =En

Total system states E;

Es

E,

EZO

E,

s

E;
Es
Es
E,
Es
E,

E

The ensemble energy  is the sum
energies of the systems:

{ZjAj=ﬂ

ZJAJEJ =F

The total ensemble energy can be

distributed in different ways among

systems

26



Finding the most probable distribution of systems in the ensemble

A particular distribution of members of the ensemble between system energy levels:

N-molecule quantum energy state: E,
A, A, A, Ac

Occupancy of each energy state: A,

Ways of assigning systems in the ensemble to different possible quantum states
2jAj=A4

Al Al
Constraints
ZJ Aj Ej =F

AAIAL T A

W (A) =

For a large ensemble (using INW(A)=_4In 2—(AInA +AInA..)

Stirling’s approximation) :

Maximize InW(A) with respect to the occupancy of each state A; using Lagrange
undetermined multipliers:

0
aAi{mW(A)—O{Z Aj —ﬂ]—ﬂ(z AjEj —EJ}ZO

J J
27



Most probable distribution of systems in the ensemble

The number of systems in the ensemble in state i in the *_ —(+a) - fEi
2 _ A =¢ e
most probable distribution, are:

Using the first constraint: ) ; Ai* = 4 eliminate the undetermined multiplier a,

A
> W

Probability of observing a particular N-molecule state 1 in the ensemble In
the most probable distribution

Ai* e_ﬂEl _ﬂE|
P = — “Canonical” ensemble partition
A Zj e—ﬁEJ Q(N V, )< function for system states

ZI A, _e (1+05)Z e — PEj ;l:>e_(1+“) _

Averages of quantities can be calculated from knowledge

(M)=ZiMiPi fihe probabilities

We still can’t use these relations since we do not know /3 28



A review of a thermodynamic relation

Changes in energy of a system:
dE =TdS — PdV
Changes in the Helmholtz free energy of a system:

) A[E] Mawetrscquan
dA=-SdT — PdV N ). “\aT ), axwell’s equations

Taking the derivative of the energy equation with respect to volume:
)T R (E )
oV J; oV J; oV J; oT ),
Using the chain rule:
oP) (oyT oP 1 0P
(a_ij i (a—Tj (am] T (M/T )

“Thermodynamic equation of state”:

(Ej __p_1| %*
oV Jr T\ oYT ), 29




Determining the  undetermined multiplier by comparing
statistical mechanical and thermodynamics relations

 Statistical mechanics relation for average system energy in the ensemble:
> Ej(NV)e st

Zie—ﬁEi(Nw

_ _ ok
« Thermodynamic relation for pressure P = v
S

(E(NV,8))=Y E(NV)P =

OE.
S
oV
PY; S )
7 7 T~

Ensemble : - :
average pressure Pressure for state ] Probability of state |

«  After some steps: o(E) —(P)-p o(P)
(see Appendix 6.A.2 of MSFP) N ), - B ).,

Statistical mechanics relation for average system pressure in the ensemble:
OE. (N,V)
<P(N,V,ﬂ)>:zj[ , ]Pj:_

30



Comparing statistical mechanics and thermodynamics relations

Thermodynamic relation: Statistical mechanics relation for ensemble averages:

&, el
oy ,

P

Canonical ensemble (isothermal-isochoric ensemble) partition function:

—E;(NV)/KT
QINV,T)=x;e &L
Energy of N-atom interacting system
(the Boltzmann factor!!!)

« Temperature is a characteristic of the ensemble, not an individual member of the
ensemble.

« The connection of statistical mechanics and macroscopic thermodynamics is
through the constraints which show how the mechanical system is coupled to the

unknown external world / universe. a1



The partition function and thermodynamic quantities
Relating thermodynamic quantities from the canonical ensemble partition function:

—Ei(N,V)/KT
Instead of Q, we deal with the logarithm |nQ(N,V,T)=|n[2je ) }

dlnf(x)_ 1 df(x)
Recall: dx F(x) dx

The temperature derivative of InQ gives: kT
oMQNV,T)] 1 2 E(NV)e ™™
oT . o k-l-z Z_e—Ei(N,V)/kT

The ensemble average energy is recognized in this relation:
(E)= sz(a'”Qj
oT  Juv
Similarly, the volume derivative of InQ gives:

(P)= kT(a(lar\]/QjN,T

Note that this relation is the statistical mechanical form for the equation of statéf




Probability distribution in the ensemble

Probability of observing a system in state I in most probable distribution of the
ensemble

Ai* —Ej /KT —Ej /KT

e e Fl “Canonical” ensemble

—E /KT - (isothermal-isochoric ensemble)
A D.:e j Q(N V. T) partition function for system states

R =

N M .. Averages of quantities in the ensemble can be calculated
<M (T)> =2 MR (M) from knowledge of the probabilities of states |

Ensemble average energy in terms of the canonical ensemble probability
distribution

) e—Ej(N,V)/kT

5 o Ei(NV)/KT
|

(E(N.V,T))=%Ej(N.V,T)P; =X ; E{(N.,V)

33



Ways to change the (E) of a N-molecule ideal

gas system S (N V)= gy 2
 Change the distribution of o  —eo——
molecules among the states ZJEJ- (N,V)Pj (N.V.T)
hz N ———— -K
8mV2/3 ;(nxv gy + niv) —0000— —00——
 Change the volume V (which —
changes energy levels) without | EE(N,V)P;(N,V,T)
changing the distribution >0 —e——

8mV2/3 Z(nxv gyt ngy) e seee—
« Change tr_\e number of | - Important for open
molecules in the system without e e systems
changing the levels —00000— __, —000—— (grand Canonical
—o0—— —— ensemble)
8mV2/3 Z (nxv + nyv + nZV) —00-00— —000—




Statistical mechanical interpretation of work and heat

Thermodynamic expression  dE = S\ + X Energy can change by performing
for energy change: work or transfer of heat:

Statlstlgal mechanical <E> — zj Ej Pj
expression for ensemble
average energy change:
SEEEEEE d(E)=3PjdEj + X ; EdP;
| I | B
The ensemble average energy can varied by:
1) Changing system energy levels while keeping probabilities in the ensemble (i.e.,
distribution of systems among the levels) fixed
2) Changing the probabilities for distribution in the ensemble among the energy levels

 In the particle in a box, energy levels can be changed by varying the volume of
the system:

E..(N,V)= (n +n +n’ )

mV 2/3

« Therefore Y. : PidE; corresponds to change of energy due to work
| I |

and > [ E dej must correspond to transfer of heat 35



Statistical mechanics and thermodynamic functions

Can be shown that: Ssz(aanj +kInQ:—kZP.InP-
oT  Juy -

(see Extended Lecture Notes)

From the thermodynamic relation A = E — TS, we can determine the statistical mechanical
expression for the Helmholtz free energy:

A:E—TS:kTZ(aIan —kTZ(aanj _KTInQ
oT )y oT )y

We get the simple relation: A=-kKTInQ(N,V,T)

The canonical partition function is the “characteristic” function for the Helmholtz free energy

ANV, T)< Q(N,V,T)

We can use the second law of thermodynamics expression:

dA =—-PdV - SdT

to relate thermodynamic quantities to the canonical ensemble partition function.

Wee :
T Juv oV Jy1



Fluctuations in the energy distribution of systems in the ensemble

How wide is the energy distribution in the ensemble?
2 2 2 2
ot =(E-(E))" =(E?)~(E)
Starting from the relation for the average energy of the ensemble of systems
—Ei(NV)/KT
XjEje

5 o EI(NV)/KT
|

(E)

Determine theé temperature derivative of the energy:
Ej —Ej(NV)KT o _Ej(NV)/KT —Ej(N.V)/KT Ei —Ei(N\V)/KT

d(E)_*iyr? ' 72
dT B 2
(Zie El(N,V)/kT)
EJZ oEj(NV)/KT £ o EINVIKT & B Ej(NV)/KT

d<E>:ZJkT2 _Zj j Zisz

dT zie—Ei(N,V)/kT ZJ_e—Ej(N,V)/kTZie—Ei(N,V)/kT

JA(E) 1 (/o 2\ 1
CodT :kT2(<E >_<E> ):kT—ZGE 37



Fluctuations in the energy distribution of systems in the ensemble are
related to the system heat capacity

Recall that the temperature derivative of the energy is the heat capacity:

Do = (7)) gt

« Meaning: Despite having the same temperature, individual members of the ensemble
can have different energies.

What are the magnitudes of the energy fluctuations in the ensemble?

. 3
For a monatomic ideal gas, C,, = 3Nk/2 and so aé = E Nk2T

‘  Fluctuations are small relative to the
oE % NKT 1 average energy for systems with large N
g =3 oC « If N =10%, then fluctuations in ~10-1? of
<E> 2 NKT \/W the average energy
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Fluctuations in the energy distribution between members of the ensemble

The probability distribution for the energy in a canonical ensemble is:

Q E e—E/kT
P(E) — ZQEE?)eE’(V)/kT
=

Expanding the probability distribution about the average energy and neglecting
terms of order 1/N? or smaller, a Gaussian distribution for the energy in a
canonical ensemble is derived (Central limit theorem strikes again!):

P(E)=P({E))exp _(ET_2§:E>)

Similarly the fluctuations in the pressure for systems in a canonical ensemble
can be determined

of =(P*)—(P)" =kT [(ag\mm _<S\F/)>NJ

We can show (see McQuarrie):

Op 1
oC 39
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Partition functions for non-interacting systems

How does the partition function behave for systems with non-interacting molecules:

Egot,i(N) =6, (1) +£45(2) +---+£,(N)

N Quantum states for individual molecules

We replace this expression for energy in the canonical ensemble partition function:

Q(N,V,T)= Zj e Cl T _ ZZ'“ZG_[%‘ D+ep(2)++er (N)IKT

/\ a f < i !
S Sum over states of the entire system is
Sum over states of N-molecule written in terms of the sum of states of
system individual molecules

Q(N,V,T) :ZZ...Ze-[ga (D+&5(2)++sr (N)I/KT
af <
=y e ‘@ (/KT > g Sp(2)IKT W o e¢ (N)/KT _ Q1QZN';Q N
The N-molecule partition function is decomposed to a product of 1-molecule
partition functions for indistinguishable molecules

40



Partition functions for non-interacting systems

We can repeat the process for the internal degrees of freedom of each molecule:

+ & + &

vibrational

gi — gtranslational rotational + gelectronic + gnuclear spin

The 1-molecule canonical ensemble partition function decomposes to partition
functions for different degrees of freedom:

qv,T) =Y o€ /KT _ Y YYY Y e—[gi,trans +&j rot +¢€k vib T€7,elec T&s,nuc I/KT
! a
trans rot vib ele nuc

q(\/ T) _ Z e_gi,trans/kT Z e_gj,rot/kT Z e_gk,vib/kT Z e_gf,elec/sz e_gs,nuc/kT
: o i j k / s

— qtransqrotqvibq elec q nuc

Using quantum mechanical expressions for translational, rotational, vibrational,
electronic, and nuclear spin energies, we can determine the partition function for
each degree of freedom.

41



Partition function q(V, T) for one molecule as a sum over energy levels

& =2/
Assume we have a system with nine states & =1A
& =0
—&: (1) /KT
q(T) = Zj e 1t Sum over one-molecule states
q(-l-) _ e—O/kT + e—O/kT + e—O/kT + e—A/kT + e—A/kT
L@ 2ANKT | a2AIKT | \=20KT | o-2A/KT
l Gather similar terms
q(T) _ 36—0/kT + Ze—A/kT + 4e—2A/kT
a(T) =D Q(s)e ™ Sum over one-molecule energy levels
Degeneracy of the energy state
Expressing the partition function as a sum over energy levels shows the
42

physical content more clearly.



Physical interpretation of the canonical partition function

e (V)IKT
av,T)=xe
J
The partition
function is: g

A

IA

3e—0/kT +29_A/kT _|_4e—2A/kT

& =2A
& =1A

g =0

Changes in partition function and probability of energy levels with temperature

T(inA/kunits) 0 0.5

q(T) 3 3.34
P,= 3e%Tjg 1 090
P,= 2¢™Tjg 0  0.08
P,= 4e2KT/qg 0  0.02

1.0 1.5

4.28 35.08
0.70 0.59
0.17 0.20
0.13 0.21

2.0

S5.68
0.53
0.21
0.26

5.0

7.32
0.41
0.22
0.37

10.0

3.08
0.37
0.22
0.41

—> 00

— 9
— 0.33
— 0.22

— 0.44
43



Physical interpretation of the canonical partition function

=2A -
K Probability of Q(g)e *VT
&= 1A occupancy of P(¢) = AT
=0 energy level E ’
9 -
8 b
Variation of partition Z-
function with £ 5F
temperature -
2F
‘I -
0 [ ] ] ] ] ] ] ] ] ]
—pm Py=3eg
08 — P,M  P,= 2eMKTg
Variation of o 06F P5(T) P, = 4e2MKT[q
probabilities with a4
temperature i
02}
-/. ] | ]

The partition function gives a measure of the number of states accessible to

00 1 2 3 4

the system at the given temperature



Switching from the quantum to classical description of states

The quantum description of the state of an N-atom system in terms of a discrete set of
states represented by a single guantum index i is much simpler than in terms of a
continuous variation of the state {ry, p;, I',, Po, ..., Iy, PyJ 1IN phase space.

It is easier to do calculations of averages with discrete states

(1) =X )Py 1)

than with continuous states

< f({r, p})> - J'.[,,,F:I:j:lvmax f({r,pHPR ({r, Py 1y, pN})drl:ldpl --dr,dpy

1,min

« The quantum description of the average of a function involves the sum over the
discrete quantum states of an N-atom system
« The classical description of an average of a function involves an integration over

the 3N-dimensional phase space of the system
45



The correspondence between quantum and classical states

From the Heisenberg uncertainty principle, there is minimum

subdivision of phase space volume which is related to Planck’s Py AX
constant: Ap
ApAx =h is the smallest subdivision of phase space volume X’

which is meaningful,
The correspondence between quantum states and volume in classical phase space is:
Number of quantum states «» Volume of phase space / h3N

« The phase space volume corresponds on average to a discrete quantum state

drNdp
X o]
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Semi-classical limit to the canonical partition function

« Sum over N particle quantum states
—E; /KT
QINV,T)=Xe
Semi-classical equivalent

* Integral over phase space elements

1 _
0= [[e H(P1,a1.--PNAND/KT 4. 4y, - dpy dg

N !h?'\'\
\ h: minimum volume of phase space element from

guantum mechanics

Molecules are indistinguishable so many states are equivalent

dpdq has units of energy-time same as the h Planck’s constant
(unit of “action” in classical mechanics)

47



Semi-classical limit to the canonical partition function
Hamiltonian of the system represents the energy in a canonical ensemble
H = K(Px1, Py1 Pz1- Pxn s Pyns Pon ) +U (X Y1,z XN YN 2N

“Classical” (semi-classical) canonical partition function

1 _
0= — [+ ]e H(P1,a1.--PNAND/KT 4, 4y, - dpy dag

We can separate the momentum and position integrals

1 —(p12X+piZy+pizz oot pﬁx+pﬁy+ pﬁz)/2ka

- NIpSN

dp p J.V e -U (ql """ 43N )/kT dql qu

Jpe

\ Momentum integrals are Gaussian!

pu 1/2
|0 I_ —aX dx = (aj
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Hamiltonian of the system represents the energy in a canonical ensemble

Evaluating the momentum position integrals

3N /2 3N/2
— " K
Q(N,V,T)= Nll(Z”kaj e i) yq dgq =2 (ZMZKT] Zy

h2 N NI h/

» Regardless of the form of the potential energy function, the contribution of the
Kinetic energy to the partition function is always the same.

« All the complexity of the intramolecular and intermolecular forces are in the
configurational integral

Configurational integral

If there are no interactions among the molecules in the system

3N/2 3N/2
1 ( 2zmKT —0/KT 1 ( 2zmkT N
Q(N,V,T)—N![ 2 j jve dql...qu =1 7 V
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Classical expression for probability in the canonical ensemble
_H Da e , kT
o H@pPynay Py )/

P, Ay Py )=
1'M1 N FN ﬂe_H(q’p)/deqldpl'“dQNde

» The Hamiltonian always has the same form with respect to momentum
N
H=2> (p’+ Py + PL) U (X, Yiu 2o Xo Yo Zy)
i=1

Substituting and separating momenta from coordinates the expression for
probability :

M@ Py Py ) KT o~ (Pl PR ) 2mkT U@y ) KT

Il e~ H{a.p})/kT dgydpy ---dgy dpy - J.e—(pfx+...+ pﬁlz)/kaT je‘U ({q})/deCh dgy

dpy -+ dpy

e—(plzx+---+ pZ,)/2mkT UCHE I

(Zﬁka)SNIZ J‘e—U ({q})/deql...qu

» Classically momenta always follow the Maxwell distribution!!!
* This is true for gases, liquids, and solids! 50



Classical expression for average energy in the canonical ensemble

[TH{g.pye HAaPY/KT 4q,dp, - dgy dpy
(E(N.V.T))= “H{q.pp)/KT
[[e~ " RAPHKT dgudp, -+~ day dpy

H :%(pfx+---+ pRz) +U ({a})

« Decompose into kinetic energy and potential energy contributions:

(02 4...xp?
(p1X+ +pNZ)/2kadp1---de

[ (pfy ++-+ PRz
(22mkT)3N/2
+J-U(q1’...’qN )e_U({q})/deql...qu
(e VAD KT g, .. dqy

 Each Kkinetic energy term gives the same contribution of kT/2 to the average energy

(E(N,V,T))=

2
1 .2 —plX/kaT 1/2
S Pixe dp o o . 1
<8K>:.[2m 1x 1X:£k_|_ IZZL X2e X" 4y = 4
2 2 x 2a\ a
—plX/2ka
Je dpyy
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What is relation between the ensemble average and experimental observations
on a single system???

Ergodic hypothesis: The probability of observing a state in an ensemble of systems
reflects the relative amount of time an individual system spends in that state.

(M), o = 1T M a,PYP(a, pY; X )dadp

= lim %IgM({Q(t),p(t)};X)dt:<M(X)>time

T—>0

E(q, p)= const

B. Fresch, G. J. Moro, "Emergence of equilibrium
thermodynamic properties in quantum pure states.
I. Theory", J. Chem. Phys. 133, 034509 (2010)
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